
Technology Arena - Day 2

A. Waste sorting
1 second, 256 megabytes

"Reduce, reuse, recycle" are the three pillars of modern-day waste
reduction. Although recycling is useful, not everybody is familiar with the
rules of recycling and what type of waste is suited for what type of
recycling bins. As a consequence, some people don't dispose of their
waste in the right recycling container. There are recycling stations in
town, each of which has been assigned to a waste of type . Waste of
type consists of characters. There are also recycling containers in
town, and again, each has been assigned to a waste of type which
consists of characters.

Once they have been filled, the recycling containers have to be brought to
a recycling station. The decision of which recycling station is best suited
for which recycling container is based upon the similarity between a waste
of type . Each container is assigned to a station whose waste of type is
the most similar to his own.

The similarity between the two types of waste is determined by the
number of characters they have in common. An example is type of waste
for the terminal is papir and container with a waste type of papin. The
first 5 characters are the same 'papi' and there is a difference in the last
character which means that their similarity is which is .

Input
The first line contains , the number of recycling stations .

The second line contains strings of length , separated with a
whitespace character.

The third line contains , the number of recycling containers
.

The fourth line contains strings of length , separated by whitespace
character.

Output
For each of the containers, print which recycling station it is best suited
for.

input

2

papir metal

3

papin metal papek

n
o

o 5 m
o

5

o o

4
5

80%

n 1 ≤ n ≤ 100

n 5

m
1 ≤ n ≤ 100

m 5

m

output

1

2

1

B. Mysterious DJ
1 second, 256 megabytes

Every day at the Stem Games in Rovinj, one of the artists is performing
and entertaining the crowd. The time has come for the main star - DJ
Array who will be performing one of his greatest hits. Unfortunately, DJ
has a problem with his most popular mix where the starting (fundamental)
frequencies have been lost and only frequencies remained. These
frequencies are consecutive, meaning that they appear next to each other
in the original mix. It is also guaranteed that the three frequencies are
given in their original order such that for a given frequency , the other
two frequencies are and , respectively. Their position in the
original mix is unknown.

In addition to having the remaining frequencies, DJ Array can also
remember , the sum of the first frequencies from the original mix.

 - an array of consecutive frequencies (separated by whitespace) S - a
sum of the first 5 frequencies

Input
The first line contains the three remaining frequencies:

, each separated by a whitespace

The second line contains , , a single number
representing the sum of the first five frequencies from the original mix.

Output
The output is a single number representing the 1st (fundamental)
frequency .

input

200 400 800

3100

Output is 100 because, for the array of 100, 200, 400, 800, and 1600 the
sum is 3100 thus the first element of an array is 100.

3 Hi 3

fi
fi+1 fi+2 i

3
S 5

Hi

1 ≤ < < ≤fi fi+1 fi+2 109

S 1 ≤ 1S ≤ 106

1 ≤ ≤f1 106

output

100

C. Chess
1 second, 256 megabytes

Johnny has a chessboard with several white pieces already placed on it.
He wants to put exactly one black piece on the chessboard and place it in
the way it attacks all the white pieces at the same time. He selects
between queen, rook, bishop, or knight. Help Johnny find the cheapest
piece that can do the job (if we assume values of pieces are ranked as
follows: knight < bishop < rook < queen), or conclude that the task is
impossible. For the reference to chess pieces movement, please visit:
https://www.chess.com/learn-how-to-play-chess#chess-pieces-move.

Input
First line contains an integer , . There will be test cases,
divided by an empty line.

Each test case consists of an matrix where each cell is "." or "#",
denoting an empty cell and a cell occupied by an enemy figure,
respectively.

Output
String, lowercase, one of: "knight", "bishop", "rook", "queen", "impossible"
(without quote marks)

input
3

........

........

........

.#......

.#......

.#......

........

........

........

..#.....

........

........

.....#..

........

........

........

........

........

..###...

.#......

........

.#......

..#.....

........

In the first example, queen can be placed at A3. Rook at B1 is not enough
since it will attack only one piece. Rook at B4 is also forbidden since B4 is
already occupied by white piece.

t 1 ≤ t ≤ 1000 t

8 × 8

output
queen

knight

impossible

https://www.chess.com/learn-how-to-play-chess#chess-pieces-move

In the second example all the pieces can do the job, but knight (e.g. at D5)
is the cheapest one.

The third example is impossible to solve.

D. The End of the World
1 second, 256 megabytes

The Great asteroid is going towards the planet of Earth. It is first spotted in
the moment on the height . The planet has a defense mechanism
that can change the course of the asteroid. Defense system starts to
operate at the moment which is on the height . In every moment
 (, step=1) it is possible to apply force to the asteroid and change

it's direction angle by a degree compared to the previous direction angle
(see the image). How many times system has to take action in order to
save the Earth? Direction of the asteroid has to be parallel or go away
from the Earth and it's height must not be below . If the Earth can
not be saved, print .

Example of the asteroid movement

Input
The first line represents height of the asteroid when it was first spotted (

).

The second line represents height of the asteroid when defense
system starts to operate ().

The third line represents degree (angle) of direction change (
)

Output
Single integer representing number of times defense system needs to
take action in order to save the world. Output is if the world cannot be
saved.

input
300

299

30

t = 0 h

t = 1 h2

t t ∈ N
d

h = 1
−1

h

1 ≤ h ≤ 106

h2

1 ≤ ≤h2 106

d

1 ≤ d ≤ 90

−1

output
2

E. Castle
2 seconds, 256 megabytes

Bob is angrily sitting in a throne at his castle. The source of his bitterness
are taxes; Bob is due to pay euro in taxes and he wants to reduce that
amount as much as possible. He has different tax reliefs at his disposal,
each of which consists of two numbers:

1. , the cost of the -th tax relief, in euro. To use the -th tax relief, Bob
has to buy it first.

2. , the multiplier of the -th tax relief.

If Bob chooses to use the -th tax relief, then his tax is influenced as
follows:

Where is the amount of taxes Bob has to pay after he purchases the -
th tax relief, is the initial amount, is the cost of the -th tax relief, and

 is the multiplier which reduces the amount of taxes.

It's also possible to purchase multiple tax relief options, in which case is
multiplied. For example, if Bob picks two tax reliefs, and , then he's
due to pay:

Or, in other words, for each tax relief Bob purchases, his taxes are
calculated as follows:

Help Bob find , the lowest amount of tax he has to pay by choosing the
appropriate tax relief options.

The solution is considered correct if the relative or absolute error is lower
than .

Input
The first line contains , , the amount of tax relief options
Bob can choose from, followed by , , the amount of taxes
Bob has to pay before purchasing tax reliefs.

The next lines contain two numbers: , the cost of the -th
tax relief, followed by , the tax multiplier. The multiplier has
at most decimals.

Output
Print , the lowest amount of tax Bob could pay.

Scoring
(17 points): .

(83 points): .

input
3 2049

15 0.601

170 0.73

12 0.509

The optimal result for Bob is to buy the first and the third tax relief, in
which case, he has to pay:

If Bob had picked all three tax reliefs, he would have to pay:

Which is more costly than if he had picked only the first and third tax relief.

k

n

ai i i

bi i

i

p = k ⋅ +bi ai

p i
k ai i

bi

bi
i i + 1

p = k ⋅ (⋅) + (+)bi bi+1 ai ai+1

p = k ⋅ (. . . ⋅ ⋅ ⋅ ⋅. . .) + (. . . + + + +. . .)bi−1 bi bi+1 ai−1 ai ai+1

p

10−6

n 1 ≤ n ≤ 256

k 1 ≤ k ≤ 106

n 1 ≤ ≤ 256ai i

0 < < 1bi bi
6

p

1 ≤ n ≤ 20

1 ≤ n ≤ 256

output
653.807541000000

2049 ⋅ (0.601 ⋅ 0.509) + (15 + 12) = 653.807541

2049 ⋅ (0.601 ⋅ 0.73 ⋅ 0.509) + (15 + 170 + 12) = 654.569505

F. Brewer-farmer partnership
3 seconds, 256 megabytes

It is well known that it takes ingredients to make beer: hops, yeast,
water and grain. In order to produce good beer, brewers need to get the
best ingredients. They already have access to good yeast, grain, and
crystal clear water; but the hops in their valley had been ravaged by a
terrible disease and could not be grown there anymore. Fortunately, there
are a lot of hop farms in a nearby valley, but not all of them are a good fit
for every brewer.

In the valley, there are brewers and farmers. Brewers keep a tab on
each farmers' hop quality and type, so each brewer has a list of all the
farmers sorted by preference. Also, farmers prefer brewers who pay for
the hops on time, so each farmer has a list of brewers sorted by
preference as well.

Brewers and farmers can be considered happy if there are no better and
available partners they can form a partnership with. In other words, a
partnership is happy if there are no brewers , , and farmers ,
such that:

 and are paired;
 and are paired;

All brewers and farmers (, , ,) would be happier if they
were arranged into partnerships () and ().

A brewer can form a partnership with only one farmer; the opposite is true
as well, meaning that a farmer can only form a partnership with only one
brewer.

Combine brewers and farmers so that the brewers get the best possible
hops and the farmers are sure that their customer (the brewer) will pay for
the hops. In other words, combine brewers and farmers into partnerships
so that their cumulative happiness is maximized.

4

n n

bi bj fi fj

bi fi
bj fj

4 bi bj fi fj
,bi fj ,bj fi

Input
The first line contains the number of brewers and farmers , (

). lines follow.

The first lines represent the preferences of brewers. Preferences of the
-th brewer are given in -th line. For each brewer , there are numbers

given, where each number denotes a farmer, , (). The
numbers are already sorted and given in descending order by preference,
meaning that the first farmer is the most preferred by brewer .

The next lines represent the preferences of farmers. Each line
represents the preferences of the -th farmer and contains numbers,
where each number denotes a brewer, , (). The numbers
are already sorted and given in descending order by preference, meaning
that the first brewer is the most preferred by farmer .

Explanation of example 1:

3 2 Brewer 's preference is farmer , while farmer is less
preferred.

2 3 Brewer 's preference is farmer , while farmer is less
preferred.

0 1 Farmer 's preference is brewer , while brewer is less
preferred.

1 0 Farmer 's preference is brewer , while brewer is less
preferred. Result: The optimal result is to make the following pairs:

1.
2.

Output
Print lines, each containing two numbers (an optimal partnership). The
first number in each line should denote the farmer, while the second
should denote the brewer.

input

2

3 2

2 3

0 1

1 0

input
4

7 4 5 6

4 7 5 6

5 7 6 4

4 5 7 6

3 2 0 1

0 3 1 2

2 0 1 3

0 2 3 1

n

2 ≤ n ≤ 1000 2 ⋅ n

n

i i i n
fj n ≤ < 2 ⋅ nfj

fj i

n

j n

bi 0 ≤ < nbi

bi j

→ b0 f3 f2

→ b1 f2 f3

→ f2 b0 b1

→ f3 b1 b0

(,)f2 b1

(,)f3 b0

n

output
2 1

3 0

output

4 3

5 1

6 2

7 0

G. Fibonacci
3 seconds, 256 megabytes

You are given a tree of nodes, each node labelled with an index (
). The root node is denoted as .

You're traveling from each node towards the root node. You give a number
from the Fibonacci sequence to each node you visit along the way. The
starting node gets the first number in the Fibonacci sequence (which is),
the second node gets the second number of the sequence (which is),
the third node gets the third number (which is) and so on until you reach
the root node.

When a node receives a number, it adds it to the number it had previously.

The process is repeated for every node in the tree.

For each node, what's it's the final number? Output it modulo .

Input
The first line contains integer (), the number of nodes.

The next lines contain two numbers each, and (
), which denote there is an edge between nodes and

.

Output
Output lines. In -th line output the final number of node with index .

Scoring
(19 points): .

(81 points): .

input

7

1 2

3 1

4 3

4 5

5 6

7 3

If we start with node 6, then the travel to node 1 would look like this: 6 -> 5
-> 4 -> 3 -> 1, meaning that node 6 gets fib(1) = 1, node 5 will get fib(2) =
1, node 4 will get fib(3) = 2, node 3 will get fib(4) = 3 and node 1 will get
fib(3) = 2.

If we start with node 4, the travel to node 1 looks like this: 4 -> 2 -> 1, so
node 4 will get fib(1) = 1, nodel 3 will get fib(2) = 1 and node 1 will get
fib(3) = 2. And so on... We will start from each of 7 nodes once.

E.g. Node 1 will get: 1 from itself, 1 from node 2, 1 from node 3, 2 from
node 4, 2 from node 7, 3 from node 5, and 5 from node 6. It is total
1+1+1+2+2+3+5 = 15. Node 4 will get: 1 from itself, 1 from node 5, and 2
from node 6, which is a total of 4.

The final output is the result for nodes 1,2,3,4,5,6,7 respectively.n k
1 ≤ k ≤ n k = 1

1
1

2

+ 7109

n 1 ≤ n ≤ 3 ⋅ 105

n − 1 ui vi
1 ≤ , ≤ nui vi ui

vi

n i i

1 ≤ n ≤ 100

1 ≤ n ≤ 2 ⋅ 105

output

15

1

8

4

2

1

1

H. Coin
2 seconds, 256 megabytes

Alice and Bob are playing on a tree (undirected graph where any two
vertices are connected by exactly one path). But it's an unusual game: it
involves a coin. At the beginning of the game, the coin is located at the
node with index . In each turn, the player can move the coin to any
adjacent node, provided that the coin hasn't visited that node before. The
player who cannot move the coin to any adjacent node loses the game.
Alice plays first. Assuming both Alice and Bob are playing optimally,
determine the winner of the game.

k

Input
The first line contains integers () and (),
the number of nodes and the initial location of the coin, respectively.

The next lines contain the tree's edges. Each line contain numbers
 and (), denoting that the -th edge connects nodes
 and .

Output
If Alice wins, print , otherwise print .

input

7 4

1 2

1 4

5 4

5 3

5 7

6 7

Coin starts in the node 4.

There are two cases:

1. If Alice moves coin to the node 1, then Bob can move it to node 2, and
then Alice can't move it anymore therefore Alice loses in this case.

2. If Alice moves coin to the node 5, then Bob can move it to node 3, and
Alice loses. If Bob moved it from 5 to 7, then Bob would lose.
However, we assume that both of them play optimally.

In both cases Alice loses, therefore Bob wins.

n 1 ≤ n ≤ 3 ⋅ 105 k 1 ≤ k ≤ n

n − 1
ai bi 1 ≤ , ≤ nai bi i
ai bi

Alice Bob

output

Bob

I. Piles of Twigs
2 seconds, 64 megabytes

Alice and Bob were taking a walk in the forest and, as they were strolling
about, they collected twigs of different sizes.

Once they came home, they divided the twigs into three groups: big twigs,
medium-sized twigs and small twigs. Now they have three piles of twigs
and want to play a game.

In each turn, the player can remove twigs from groups. But, there's a
catch, the twig removal is limited to a ruleset which Alice and Bob change
each time they play.

First, Alice and Bob come up with the game's rules and they think of
different moves they can make. For each of the moves, they define ,
which indicates exactly how many twigs have to be removed from the -th
pile in order for the turn to be valid. The player who cannot make a valid
move - loses the game.

Players alternate taking turns. Alice plays first, then Bob, then Alice, et
cetera.

After coming up with the rules, Alice and Bob play games, each game
with different pile sizes.

Both Alice and Bob always play optimally. If Alice plays first, print the
winner of the game for each of the queries.

Input
The first line contains (), the number of rules Alice and Bob
come up with.

The following lines contain three numbers, , and , indicating
how many twigs have to be removed from each pile in order for the turn to
be valid. (, ,). It is guaranteed
that each of the rules is a unique combination of three numbers.

The following line contains (), the number of games
Alice and Bob will play.

The following lines each contain three numbers; the number of twigs in
the first pile , the number of twigs in the second pile and the number of
twigs in the third pile , .

Output
For each of the games, print Alice if Alice wins, otherwise print Bob.

input
3

0 1 0

1 0 0

2 0 7

2

1 1 2

2 0 8

There are three rules in Alice and Bob's ruleset.

Bob and Alice play two games. In the first game, there is big twig,
medium twig and small twigs. Alice play first. In her first turn, she could
either take one twig from the big-twig pile or one twig from the medium-
twig pile. If she takes a twig from the big-twig file, Bob will take a twig from
the medium-twig pile and Alice will lose. If she removes a twig from the
medium-twig pile, Bob will remove a twig from the big-twig file and Alice
will lose again. Either way, Bob always wins.

In the second game, in her first turn, Alice could take two twigs from the
big-twig pile and seven twigs from the small-twig pile. The remaining piles
will have , and twigs, respectively. This means Bob can take no more
valid moves and automatically loses the game.

n

n ki
i

q

q

n 1 ≤ n ≤ 10

n ka kb kc

0 ≤ ≤ 30ka 0 ≤ ≤ 30kb 0 ≤ ≤ 30kc
n

q 1 ≤ q ≤ 2 ⋅ 105

q
a b

c 0 ≤ a, b, c ≤ 30

q

output
Bob

Alice

1 1
2

0 0 1

J. Palenta
3 seconds, 256 megabytes

Alice said she could solve all problems on stem games in less than an
hour. Bob told her she should eat much more palenta before claiming
such things. Time is running out, and Alice needs your help! Except for
moral support, Alice needs you to solve the following problem:

There is board, and in every cell, there is an integer between and
, inclusive. Any two elements which are in the same row or column are

different.

You must select cells, exactly one from each row and exactly one from
each column. Also, every non-selected cell should have either a bigger
value than both selected cells in its row and column, or a lower value than
both of them.

n × n 1
n

n

Codeforces (c) Copyright 2010-2022 Mike Mirzayanov
The only programming contests Web 2.0 platform

Also, some of the cells are colored white, while some are colored red. The
problem author likes red more than white, so he wants you to select as
many red cells as possible while satisfying other requirements. What is
the maximal number of red selected cells?

Input
First line contains integer ().

Next lines contain integers each, denoting values on the board. Board
is a valid board according to the rules stated above.

Next lines contain values or . If cell then cell is red. If
it's then is white.

Output
Output one integer, maximal number of red selected cells.

input

3

1 2 3

3 1 2

2 3 1

0 0 1

0 0 0

0 1 0

In the sample, cells in (row , column) and (row , column) are red,
while other cells are white.

You can select cells . That selects two red cells, thus
output is .

n 1 ≤ n ≤ 200

n n

n n 0 1 = 1ai,j ai,j
0 ai,j

output

2

1 3 3 2

(1, 3), (2, 1), (3, 2)
2

https://codeforces.com/

